A critical synthesis of thermophysical characteristics of nanofluids

نویسندگان

  • Khalil Khanafer
  • Kambiz Vafai
چکیده

A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this work. The experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement. Theoretical and experimental studies are essential to clarify the discrepancies in the results and in proper understanding of heat transfer enhancement characteristics of nanofluids. At room temperature, it is illustrated that the results of the effective thermal conductivity and viscosity of nanofluids can be estimated using the classical equations at low volume fractions. However, the classical models fail to estimate the effective thermal conductivity and viscosity of nanofluids at various temperatures. This study shows that it is not clear which analytical model should be used to describe the thermal conductivity of nanofluids. Additional theoretical and experimental research studies are required to clarify the mechanisms responsible for heat transfer enhancement in nanofluids. Correlations for effective thermal conductivity and viscosity are synthesized and developed in this study in terms of pertinent physical parameters based on the reported experimental data. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical synthesis and characterization of Zn-doped cadmium oxide based nanoparticles: As nanofluids for thermophysical applications

Semiconductor nanoparticles are studied worldwide at present because of their good optical, physical and chemical properties. In this research work, a set of Zn doped cadmium oxide (Cd1-xZnxO1-δ) nanoparticles were synthesized by simple chemical precipitation route. The precursor materials used in this research work were cadmium nitrate and zinc nitrate (as basic materials) and sodium hydroxide...

متن کامل

Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation

In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...

متن کامل

An Experimental Study on Thermophysical Properties of Multiwalled Carbon Nanotubes (RESEARCH NOTE)

Nanofluids are the heat transfer fluids having remarkable thermal properties. The paper presents the experimental analysis of thermal conductivity, density, specific heat and viscosity of multiwalled carbon nanoparticles dispersed in water at various temperatures and particle concentrations. To examine the forced convection heat transfer of Multiwalled Carbon Nanotubes (MWCNT)-water nanofluid, ...

متن کامل

Providing an Analytical Model in Determining Nanofluids

The influence of temperature, mean nanoparticle size and the nanoparticle concentration on the dynamic viscosities of nanofluids are investigated in an analytical method followed by introduction of modified equations for calculating the nanofluids’ viscosities. A new correlation is developed for effective viscosity based on the previous model where the Brownian movement of the nanoparticles is co...

متن کامل

Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile

This research aims at studying the stability and thermophysical properties of nanofluids designed as dispersions of sulfonic acid-functionalized graphene nanoplatelets in an (ethylene glycol + water) mixture at (10:90)% mass ratio. Nanofluid preparation conditions were defined through a stability analysis based on zeta potential and dynamic light scattering (DLS) measurements. Thermal conductiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011